Is Vestibular Self-Motion Perception Controlled by the Velocity Storage? Insights from Patients with Chronic Degeneration of the Vestibulo-Cerebellum
نویسندگان
چکیده
BACKGROUND The rotational vestibulo-ocular reflex (rVOR) generates compensatory eye movements in response to rotational head accelerations. The velocity-storage mechanism (VSM), which is controlled by the vestibulo-cerebellar nodulus and uvula, determines the rVOR time constant. In healthy subjects, it has been suggested that self-motion perception in response to earth-vertical axis rotations depends on the VSM in a similar way as reflexive eye movements. We aimed at further investigating this hypothesis and speculated that if the rVOR and rotational self-motion perception share a common VSM, alteration in the latter, such as those occurring after a loss of the regulatory control by vestibulo-cerebellar structures, would result in similar reflexive and perceptual response changes. We therefore set out to explore both responses in patients with vestibulo-cerebellar degeneration. METHODOLOGY/PRINCIPAL FINDINGS Reflexive eye movements and perceived rotational velocity were simultaneously recorded in 14 patients with chronic vestibulo-cerebellar degeneration (28-81 yrs) and 12 age-matched healthy subjects (30-72 yrs) after the sudden deceleration (90°/s2) from constant-velocity (90°/s) rotations about the earth-vertical yaw and pitch axes. rVOR and perceived rotational velocity data were analyzed using a two-exponential model with a direct pathway, representing semicircular canal activity, and an indirect pathway, implementing the VSM. We found that VSM time constants of rVOR and perceived rotational velocity co-varied in cerebellar patients and in healthy controls (Pearson correlation coefficient for yaw 0.95; for pitch 0.93, p<0.01). When constraining model parameters to use the same VSM time constant for rVOR and perceived rotational velocity, moreover, no significant deterioration of the quality of fit was found for both populations (variance-accounted-for >0.8). CONCLUSIONS/SIGNIFICANCE Our results confirm that self-motion perception in response to rotational velocity-steps may be controlled by the same velocity storage network that controls reflexive eye movements and that no additional, e.g. cortical, mechanisms are required to explain perceptual dynamics.
منابع مشابه
Vestibular perception of angular velocity in normal subjects and in patients with congenital nystagmus.
A technique is described for the assessment of vestibular sensation. The two main goals of the study were (i) to compare the perception of angular velocity with the eye velocity output of the vestibulo-ocular reflex and (ii) to study vestibular function in patients with congenital nystagmus; this was needed since most previous studies, based on eye movement recordings, have been inconclusive. S...
متن کاملAtaxia telangiectasia : a “ disease model ” to understand 1 cerebellar control of vestibular reflexes 2 3
47 Experimental animal models suggest that modulation of the amplitude and 48 direction of vestibular reflexes are important functions of the vestibulo-cerebellum and 49 contribute to the control of gaze and balance. These critical vestibular functions have 50 been infrequently quantified in human cerebellar disease. In 13 subjects with ataxia 51 telangiectasia (A-T), a disease associated with ...
متن کاملEye Position Feedback in a Model of the Vestibulo-ocular Reflex in Spino-cerebellar Ataxia 6
The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases characterized by progressive instability of posture and gait, incoordination, ocular motor dysfunction, and dysarthria due to degeneration of cerebellar and brainstem neurons. Recent studies have established that there are more than 16 genetically distinct subtypes. Clinical observations suggest that...
متن کاملVelocity storage contribution to vestibular self-motion perception in healthy human subjects.
Self-motion perception after a sudden stop from a sustained rotation in darkness lasts approximately as long as reflexive eye movements. We hypothesized that, after an angular velocity step, self-motion perception and reflexive eye movements are driven by the same vestibular pathways. In 16 healthy subjects (25-71 years of age), perceived rotational velocity (PRV) and the vestibulo-ocular refle...
متن کاملCoordination of eye and head movements during smooth pursuit in patients with vestibular failure.
During pursuit of smoothly moving targets with combined eye and head movements in normal subjects, accurate gaze control depends on successful interaction of the vestibular and head movement signals with the ocular pursuit mechanisms. To investigate compensation for loss of the vestibulo-ocular reflex during head-free pursuit in labyrinthine-deficient patients, pursuit performance was assessed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012